

Universidad de Puerto Rico Vicepresidencia en Asuntos Académicos

Comité Sistémico para el Mejoramiento de

Programas Relacionados a la Química de la Universidad de Puerto Rico

Prontuario

I. Título del curso : Química Analítica

II. Codificación : QUIM 3025

III. Prerequisitos : QUIM 3002-3004

Corequisito : QUIM 3026

IV. Horas crédito : Cuatro (4)

Tres (3) horas de conferencia por semana

V. Descripción del curso : Estudio de la teoría y los métodos para el

análisis cualitativo y cuantitativo utilizando gravimétricos métodos volumétricos. incluyendo titulaciones potenciométricas. Breve introducción métodos а los espectrofotométricos de análisis con énfasis en la región ultravioleta-visible. La conferencia enfatiza la teoría fundamental del análisis químico, los equilibrios pertinentes y el cómputo de los resultados. Se estudian. además, las limitaciones y los errores posibles determinaciones analíticas comunes, y la interpretación de los resultados

que se obtienen de éstas.

VI. Objetivos generales : En este curso se pretende que el estudiante:

1. Explique los principios en que se fundamentan los métodos de análisis de uso común tales como: volumetría, gravimetría, potenciometría, espectrofotometría, cromatografía, analíticos, radioquímicos, bioanalíticos y ambientales.

- 2. Resuelva problemas utilizando datos generados de los métodos analíticos estudiados.
- 3. Determine la confiabilidad estadística de los resultados de un análisis.
- 4. Aplique el conocimiento adquirido a otras áreas tales como: farmacia, biología y ciencias ambientales.

VII. Bosquejo de contenido y distribución del tiempo:

1.	Introducción	(1.5 horas)
2.	Análisis Estadístico (será cubierto en el laboratorio)	(0 horas)
3.	Estequiometría	(4.5 horas)
4.	Conceptos generales de equilibrio	(4.5 horas)
5.	Métodos gravimétricos de análisis	(2.5 horas)
6.	Equilibrio ácido-base	(4 horas)
7.	Curvas de titulación ácido-base	(3.5 horas)
8.	Reacciones y titulaciones complejométricas	(3 horas)
9.	Reacciones y titulaciones de precipitación	(1.5 horas)
10.	Conceptos básicos en análisis instrumental	(1 hora)
11.	Fundamentos de Electroquímica	(1.5 horas)
12.	Potenciometría	(4.5 horas)
13.	Espectrofotometría molecular de absorción	(4.0 horas)
14.	Métodos cromatográficos	(3 horas)

Estos se examinarán a través del semestre mediante el ofrecimiento de evaluaciones periódicas con un total de seis horas de duración

TOTAL 45 horas

VIII. Estrategias instruccionales

Las estrategias instruccionales ha utilizarse incluirán, entre otras:

- a. Conferencias dictadas por el profesor o profeosra.
- b. Discusión de temas asignados y presentados en clases
- c. Prácticas de laboratorio (evaluadas en el curso de laboratorio)
- d. Demostraciones
- e. Estudio independiente de temas asignados aprendizaje y la para la búsqueda en el Centro de Recursos para el Aprendizaje y la red cibernética.
- f. Modulos instruccionales
- g. Instrucción asistida por computadora

IX. Recursos de Aprendizaje

Los estudiantes usarán computadora y calculadora científica (a ser adquirida por ellos). Además, tendrán a su disposición libros, revistas y otros recursos de aprendizaje en el CRA.

X. Estrategias de Evaluación:

El curso está dividido en 14 unidades. Esta se examirán a trvés del semestre mediante el ofrecimiento de evaluaciones periódicas.

La distribución porcentual será como sigue:

Métodos periódicos de evaluación: 40% Examen final: 20% Laboratorio: 40%

Evaluación diferenciada disponible a estudiantes con necesidades especiales conforme a la Ley 51 de I7 de junio de 1996.

XI. Sistema de calificación:

Se utilizará el método cuantificable y cada unidad establecerá el rango de puntuaciones para otorgar las calificaciones de A, B, C, D y F.

XII. Referencias:*

- 1. Christian, G. D. *Analytical Chemistry* (6^{ta} ed.); John Wiley & Sons: New York, 2003.
- 2. De Jesús Cardona, Héctor; *Manual de Repaso de Química Analítica*, 1999.

- 3. De Jesús Cardona, Héctor; <u>Manual de Acompañamiento del curso de Química Analítica</u>, 1999.
- 4. Ebbing, D. E. and Gammon, S. D. *General Chemistry* (9^{na} ed.); Brooks Cole: USA, 2007.
- 5. Harris, D.C. *Quantitative Chemical Analysis* (7^{ta} ed.); W.H. Freeman & Co. Ltd. New York, 2006.
- 6. Higson, S. P. J. *Analytical Chemistry*; Oxford United Press, USA. 2004.
- 7. Kellner, R. et.al. *Analytical Chemistry: A Modern Approach to Analytical Science (*2^{da} ed.); Wiley- VCH: New York, 2004.
- 8. McMurray, J. and Fay, R.C. *Chemistry* (4^{ta} ed.); Prentice Hall, New Jersey, 2004.
- 9. Torres, Luz M. Estrategias de Intervención para la Inclusión. Isla Negra, Río Piedras, 2002.
- 10. Torres, Luz M. Asistencia Tecnológica Derecho de Todos. Isla Negra, Río Piedras, 2002.
- 11. Skoog, D. A.; West, et.al. *Fundamentals of Analytical Chemistry* (8^{va} ed.); Thomson Learning, Fort Worth, 2004.
- 12. Skoog, D. A. *Química Analítica* (7^{ma} ed.); McGraw Hill: México, 2001.
- 13. Skoog, D. A. and West, D. M. *Introducción a la Química Analítica;* Reverté, 2008.
- 14. Skoog, D. A., Holler, F. J., Crouch, S. R. *Principles of Instrumental Analysis* 96^{ta} ed.); Brooks Cole, USA, 2006.
- 15. Wang, J. *Analytical Electrochemistry* (3^{ra} ed.); Wiley-VCH: New York, 2006.
 - * Esta bibliografía es sugerida. Cada profesor seleccionará las que se ajusten a las necesidades de sus estudiantes, considerando su disponibilidad en el Centro de Recursos para el Aprendizaje de su unidad, y las actualizará con regularidad.

Aquellos estudiantes que requieran acomodo razonable y equipo asistivo necesario conforme a las Personas con Impedimentos (OAPI) deben notificarlo e evidenciarlo en la Oficina de Ley 51 y/o en la Oficina de Servicios Médicos. Estas oficinas se

encargarán de establecer un plan de acción con el profesor o profesora a cargo del curso y/o laboratorio.

OBJETIVOS OPERACIONALES DE QUIMICA ANALITICA (QUIM 3025)

Al finalizar el estudio de cada unidad, el estudiante debe:

A. Introducción

- a. Distinguir entre análisis cualitativo y cuantitativo
- b. Explicar los pasos de un proceso analítico
- c. Explicar que es la validación del método

B. Análisis Estadístico (será cubierto en el laboratorio)

(0 horas)

- a. Distinguir los tipos de errores
- b. Explicar el tratamiento de errores indeterminados
- c. Calcular y explicar las pruebas específicas: t, Q y F
- d. Calcular los límites de confiabilidad o intervalo de confianza
- e. Describir e interpretar el método de cuadrados mínimos

C. Estequiometría

(4.5 horas)

- a. Definir y/o explicar los conceptos fundamentales
- b. Calcular las concentraciones de soluciones en términos de:
 - molaridad
 - masa / masa
 - masa / volumen
 - volumen / volumen
 - otros
- c. Explicar la preparación de soluciones
- d. Evaluar las expresiones y significados de resultados analíticos

D. Conceptos generales de equilibrio

(4.5 horas)

- a. Hacer cálculos usando constantes de equilibrio
- b. Determinar el efecto de ión común
- c. Definir Actividad y coeficiente de actividad
- d. Calcular la actividad y coeficiente de actividad

E. Métodos gravimétricos de análisis

(2.5 horas)

- a. Describir las propiedades de precipitados y agentes precipitantes
- b. Definir y/o explicar el proceso de secado e incineración de precipitado
- c. Calcular resultados a base de datos gravimétricos
- d. Aplicaciones de métodos gravimétricos

F. Equilibrio ácido-base

(4 horas)

- a. Ácidos y bases
 - definir (ácidos-bases fuertes y débiles)

- clasificarlos de acuerdo a su fortaleza
- identificar el par ácido/base conjugado
- definir y/o explicar la escala de pH
- b. Equilibrio ácido-base acuoso
 - Hacer cálculos de pH, pOH, [H⁺], [OH⁻] y concentraciones de las especies
- c. Equilibrio de sales de ácidos y bases débiles
 - Hacer cálculos de pH, pOH, [H⁺], [OH⁻] y concentraciones de las especies
- d. Soluciones amortiguadoras (buffers)
 - Explicar la preparación de soluciones amortiguadoras
 - Hacer cálculos de pH: adición de ácidos y bases fuertes
 - Definir y/o explicar efecto de la capacidad amortiguadora (conceptual)
 - Identificar las aplicaciones
- e. Sistemas de ácidos y bases polipróticos
 - Establecer relaciones de Ka₁ Ka₂, Kb₁ Kb₂ y K_w para calcular la concentración de (H₃O⁺)
- f. Valor de α
 - Hacer cálculos utilizando valor α

G. Curvas de titulación ácido-base

(3.5 horas)

- Construir curvas de titulación para Ácido fuerte versus base fuerte y viceversa mediante cálculos matemáticos de pH
- b. Construir curvas de titulación para base débil versus ácido fuerte y viceversa mediante cálculos matemáticos de pH
- c. Determinar el punto fina de una titulación acido-base mediante el uso de indicadores y otros
- d. Calcular el pH para ácidos polipróticos y sus sales (cálculos cuantitativos opcional)
- e. Construir curvas de tituación de ácidos polipróticos
- f. Identificar aspectos cualitativos de mezclas de ácidos o bases (cálculo cuantitativo opcional)
- g. Identificar propiedades de las soluciones estándares de ácidos y bases

H. Reacciones y titulaciones complejométricas

(3 horas)

- a. Describir los complejos y sus constante de formación
- b. Describir quelatos: EDTA
- c. Describir la curva de titulación de EDTA
- d. Identificar la detección del punto final en titulaciones complejométricas: indicadores y otros
- e. Describir el rol de agentes auxiliares y enmascarantes

1. Reacciones y titulaciones de precipitación

(1.5 horas)

a. Construir curvas de titulación para reacciones de precipitación.

 Determinación de punto final de titulación en reacciones de precipitación: indicadores y otros

J. Conceptos básicos en análisis instrumental

(1 hora)

- b. Describir la señal analítica y sus características
- c. Describir el método de calibración
- d. Describir el método de adición estándar

K. Fundamentos de Electroquímica

(1.5 horas)

- a. Definir conceptos fundamentales
- b. Describir los tipos de celdas electroquímicas
- c. Definir el Potencial Estándar o Formal
- d. Hacer cálculos utilizando la ecuación de Nernst
- e. Identificar las limitaciones del potencial del electrodo
- f. Describir las aplicaciones
 - Titulación redox

L. Potenciometría

(4.5 horas)

- a. Definir medidas de potencial
- b. Describir electrodos de referencia
- c. Identificar y describir electrodos indicadores: primer tipo, segundo tipo, redox, vidrio, y selectivos a iones
- d. Calcular la concentración usando medida de potencial Potenciometría directa (curva de calibración) Potenciometría indirecta (titulación potenciométrica)

M. Espectrofotometría molecular de absorción

(4.0 horas)

- a. Describir las propiedades de la radiación electromagnética y su interacción con la materia
- b. Identificar y describir la instrumentación para medir absorción
- c. Evaluar, en términos cualitativos y cuantitativos (Ley de Beer-Lambert) los datos obtenidos mediante la espectrofotometría molecular de absorción.

N. *Métodos cromatográficos*

(3 horas)

- a. Describir los principios que rigen estos métodos
- b. Identificar y describir los tipos de cromatografía en términos de:
 - Componentes del sistema
 - Aspectos cuantitativos
 - Aplicaciones

Versión revisada por el Comité Sistémico para la Aprobación de Programas de Química por la ACS en **mayo 2009**. Los miembros del Comité que participaron en estos trabajos fueron:

Dra. Sonia Rivera UPR Aquadilla Profa. Sylka Torre, Profa. Cándida Peña UPR Arecibo Dra. María Añeses UPR Bavamón Profa. Marta Arroyo **UPR** Carolina Dra .Mayra Pagán **UPR** Cavev Dr. David Santiago UPR Humacao Dra. Ivelisse Padilla UPR Mayagüez Dr. Jaime García **UPR Ponce** Dr. Francisco Echegaray UPR Río Piedras Dra. Ingrid Montes UPR Río Piedras Prof. Celia R. Quiñones Seiglie **UPR** Utuado

Versión inicial trabajada por el Comité Sistémico de Química Analítica en reunión celebrada el **25 de febrero de 2005** en UPR Bayamón. Los miembros del Comité que participaron en estos trabajos fueron:

Dr. Cándido Bernal UPR Río Piedras Dr. Raúl J. Castro Santiago **UPR** Cayey Dr. Héctor De Jesús Cardona UPR Bayamón **UPR Ponce** Prof. Jaime García Dr. Fernando Herrera UPR Arecibo Dra. Aidalú Joubert UPR Mayaqüez **UPR** Carolina Dr. Cesar Lozano UPR Río Piedras Dr. Noel Motta Dr. Rolando Oyola UPR Humacao Prof. Sonia Rivera UPR Aquadilla Dra. Aminda Sierra UPR Bayamón **UPR** Utuado Prof. Celia R. Quiñonez Seiglie