

UNIVERSIDAD DE PUERTO RICO EN ARECIBO DEPARTAMENTO DE BIOLOGÍA

PRONTUARIO

Título del curso: Genética de Bacterias

Codificación del curso: BIOL 3905

Número de horas/crédito: 3.0 horas semanales de conferencia/tres (3) créditos

Prerrequisitos: Biología General I y II: BIOL3011-3012 y BIOL 3013-3014

BIOL 3731-3732 Microbiología General y su laboratorio

Correquisitos: Ninguno

Descripción del curso: Estudio de los principios básicos de la genética de las

bacterias y los virus, naturaleza, organización y función del material genético en bacterias y bacteriófagos, los mecanismos de rearreglo e intercambio genético y el análisis de la recombinación, los procesos de mutación y reparación, la manipulación del material genético y el DNA recombinante. Se enfatiza la importancia de los sistemas genéticos procariotas en el desarrollo de la genética molecular y la biotecnología. Curso para estudiantes del Programa de BS en Microbiología de la UPR en Arecibo.

Objetivos del curso:

Al finalizar el curso los estudiantes podrán:

- 1. Diferenciar los principios básicos de la genética de las bacterias y virus.
- 2. Efectuar deducciones a partir de los mecanismos de rearreglo e intercambio genético y el DNA recombinante.
- 3. Valorar la importancia de los sistemas genéticos en procariotas en el desarrollo de la genética molecular y la biotecnología.
- 4. Relacionar los últimos adelantos de la ingeniería genética aplicada a los microorganismos.

Bosquejo de contenido y distribución de tiempo:

Temas y Subtemas	Tiempo
I. Introducción	6
A. Terminología	
B. Principios básicos	
1. Genes	
2. Estructura de DNA	
3. Replicación, transcripción y traducción	
4. Preparación de DNA	
a. Enzimas de restricción	
b. Mutaciones	
II. Mecanismos de reparación del DNA	9
A. Lesiones en el DNA	
B. Reparación pre-replicativa	
1. Fotoreactivación	
2. Reparación por excisión	
C. Reparación de la Genética de Bacterias	
1. Bacterias	
i. Tipos de <u>E.Coli</u> y otras	
ii. Mutaciones en bacterias	
III. Transformación en bacterias	5
A. Plasmidio	
B. DNA cromosómico	
IV. Conjugación en bacterias	5
A. Factor sexual	
B. Plasmidio	
V. Transducción en bacterias	5
VI. Estudio de la genética de bacteriófagos	6
A. Definición de bacteriófagos	
B. Tipos	
1. Virulentas	
2. temperadas	
C. Integración de fagos al cromosoma bacteriano	
D. Mecanismo de expresión genética de los fagos	
1. Lisogenia	
2. Ciclo lítico	
3. Fenotipo mutante	
VII. Empleo de DNA recombinante en la manipulación genética de	9
microorganismo	
A. Uso de endonucleasas de restricción	
B. Vectores de clonación	
C. Selección de células portadoras del DNA	
D. Perspectivas de la tecnología de moléculas recombinantes	

Estrategias instruccionales:

El proceso de enseñanza – aprendizaje se llevará a cabo mediante conferencias, discusiones en clase de temas de actualidad que guarden relación con los temas de la conferencia, y los objetivos del curso, asignación de capítulos para autoestudio mediante preguntas guías, análisis de organigramas/mapas de conceptos, demostraciones, uso y elaboración de modelos, seminarios y talleres relativos a los temas e instrucción asistida por computadora.

Requisitos especiales para tomar el curso:

Pizarra inteligente, proyección de ilustraciones, diagramas y tablas para complementar la información de la conferencia y del texto del curso, proyección de películas, uso de páginas en portales cibernéticos, calculadoras, libretas de dibujo y lápices para colorear.

Equipo e instalaciones requeridas:

Salón con computadora y equipo multimedios, modelos y computadoras.

Estrategias de evaluación:

Tres (3) pruebas parciales	45%
Examen Final	25%
Otros criterios de evaluación,	30%
el uso dependerá del profesor:	
portafolio, proyecto de creación,	
actividades de assessment,	
participación informada en clase y	
asistencia a clase	

. 1 . 100 .

Total 100%

Asistencia: El estudiante tendrá al inicio del semestre una nota equivalente a 100 puntos de los cuales se le restarán cinco (5) puntos por cada ausencia no justificada.

Sistema de calificación: Tradicional - Letra

100 - 90	A
89 - 80	В
79 - 70	C
69 - 60	D
59 - 0	F

Bibliografía:

Barneem, Susan R. Biotechnoly. Wadworth Pub. 1998

Becker J., G. Caldeall y E. A. Zachoo. Biotecnology: Lab. Course Academic Press. 1996

Birge, E. Bacterial and Bacteriaphage Genetics. Springer. 2000

Fairbanks D. y W. R. Anderson. Genetics. Brooks/Cole Publishing 1999.

Hart L. D. y Jones E. Essential of Genetics: A Genomics Perspective. Jones and Barlett. 2002

Hartwell'et al. From Genes to Genomes: Mc Graw Hill. 2000

Kreuzer H. y A. Massy: Recombinant DNA and Biotecnology. ASM Press 1996.

Tamaris, R. H. Principles of Genetics. Mc Graw Hill. 1999

Weaver R. y P. W. Hedrick. Genetics. WCB. 1997

NOTA: Los estudiantes que reciban servicios de Rehabilitación Vocacional deben comunicarse con el (la) profesor(a) al inicio del semestre para planificar el acomodo razonable y equipo asistivo necesario conforme a las recomendaciones de la Oficina de Asuntos para las personas con impedimento (OAPI) del Decanato de Estudiantes. También aquellos estudiantes con necesidades especiales que requieran de algún tipo de asistencia o acomodo deben comunicarse con el (la) profesor(a).

¹Modificación o ajuste al proceso o escenario educativo o de trabajo que permite a la persona con impedimentos participar y desempeñarse en este ambiente.